Закон Харди-Вайнберга
Закон Харди-Вайнберга сформулировали в 1908 г. Независимо друг от друга математик Г. Харди в Англии и врач В. Вайнберг в Германии. Закон Харди-Вайнберга гласит, что процесс наследственной преемственности сам по себе не ведет к изменению частот аллелей и (при случайном скрещивании) частот генотипов по определенному локусу. Более того, при случайном скрещивании равновесные частоты генотипов по данному локусу достигаются за одно поколение, если исходные частоты аллелей одинаковы у обоих полов.
Равновесные частоты генотипов задаются произведениями частот соответствующих аллелей. Если имеются только два аллеля, А и а, с частотами p и q, то частоты трех возможных генотипов выражаются уравнением:
(р + g)2 = р2 + 2рg + g2
А а АА Аа аа,
где буквам во второй строке, обозначающем аллели и генотипы, соответствуют расположенные над ними частоты в первой строке; в котором:
· р – частота встречаемости аллеля А;
· g – частота встречаемости аллеля а;
· g2 – частота встречаемости генотипа аа;
· р2 – частота встречаемости генотипа АА;
· рg – частота встречаемости генотипа Аа. [1,с.111-112]
Таким образом, если скрещивание случайно, то частоты генотипов связаны с частотами аллелей простым уравнением квадрата суммы. Приведенная выше формула получила название уравнения Харди–Вайнберга.
Предположим, что в популяции р = 0,7А, g = 0,3а, тогда частоты встречаемости генотипов будут равны (0,7 + 0,3)2 = 0,49 + 0,42 + 0,09 = 1.
Интересно, что в следующем поколении гаметы с аллелем А будут вновь возникать с частотой 0,7 (0,49 от АА + 0,21 от Аа), а с аллелем а – с частотой 0,3 (0,09 от аа + 0,21 от Аа), т.е. частоты генов и генотипов остаются неизменными из поколения в поколение – это и есть закон Харди–Вайнберга. [1] Если имеются три аллеля, например, А1, А2 и А3, с частотами p, q и r, то частоты генотипов определяются следующим образом:
(р + q + r)2 = р2 + q2 + r2 + 2рq + 2pr + 2qr
A1 A2 А3 А1А1 А2А2 А3А3 А1А2 А1А3 А2А3.
Аналогичный прием возведения в квадрат многочлена может быть использован для определения равновесных частот генотипов при любом числе аллелей. Здесь можно отметить, что сумма всех частот аллелей, так же, как и сумма всех частот генотипов, всегда должна быть равна 1. Если имеются только два аллеля с частотами р и q, то р + q = 1, и, следовательно, (р + g)2 = р2 + 2рg + g2 = 1; если же имеются три аллеля с частотами p, q и r, то р + q + r = 1, и, следовательно, также (р + q + r)2 = 1 и т.д.
Чтобы понять смысл закона Харди-Вайнберга, можно привести простой пример. Предположим, что данный локус содержит один из двух аллелей, А и а, представленных с одинаковыми для самцов и самок частотами: р для А и q для а. Представим себе, что самцы и самки скрещиваются случайным образом, или, что то же самое, гаметы самцов и самок образуют зиготы, встречаясь случайно. Тогда частота любого генотипа будет равна произведению частот соответствующих аллелей.
Вероятность того, что некоторая определенная особь обладает генотипом АА, равна вероятности (р) получить аллель А от матери, умноженной на вероятность (р) получить аллель А от отца, то есть р умножить на р равняется р2 .
Совершенно аналогично вероятность того, что определенная особь обладает генотипом аа, равна g2 . Генотип Аа может возникнуть двумя путями: организм получает аллель А от матери и а от отца, или, наоборот, аллель А от отца и аллель а от матери. Вероятность того и другого события равна рg, а значит суммарная вероятность возникновения Аа равна 2рg.
Теперь можно доказать справедливость трех утверждений, содержащихся в законе Харди-Вайнберга:
1. Частоты аллелей не изменяются от поколения к поколению. Это можно легко показать. Частота аллеля А в потомстве в соответствии с таблицей 1 равна сумме частоты генотипа АА и половины частоты генотипа Аа, т.е. равна р2 + рg = р(р + g ) = р (поскольку р + g =1). [1]
2. Равновесные частоты генотипов задаются возведением в квадрат суммы частот аллелей и не изменяются от поколения к поколению. Так как частоты аллелей у потомства остаются такими же (р и g), какими были у родителей, то и частоты генотипов в следующем поколении также остаются неизменными и равными р2, 2рg и g2 .
Другие статьи:
Забывание как нормальный и патологический процесс
Произвольное и непроизвольное забывание – это только одна из возможностей классифицировать забывание. К основным признакам произвольного забывания относятся, прежде всего, наличие у субъекта мотивации забывания. Чтобы забыть, ему нужно за ...
Развитие сюжетно-ролевой игры у детей дошкольного возраста
Анализ литературы [4;5;9;14;15;16;17;33;36;51;62;70;76;82;83 и др.] показывает, что манипулирование предметами, сопровождаемое эмоциональным оживлением и чувством удовольствия, можно считать игрой. Условия для игры-манипуляции создаются в ...
История возникновения и проблема употребления алкоголя
Похититель рассудка - так именуют алкоголь с давних времен. Об опьяняющих свойствах спиртных напитков люди узнали не менее чем за 8000 лет до нашей эры - с появлением керамической посуды, давшей возможность изготовления алкогольных напитк ...